Smart fields: model-based control
and optimisation of subsurface flow
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Research & development drivers

 Increasing demand; reducing supply

* energy demand continues to grow world-wide
* renewables are developing too slow to keep up with demand
« ‘easy oil' has been found; few new discoveries; complex fields

=> produce more from existing reservoirs

 Increasing knowledge- and data intensity

* more sensors: pressure/temperature/flow, time-lapse
seismics, passive seismics, EM, tilt meters, remote sensing, ...
* more control: multi-lateral wells, smart wells,
snake wells, dragon wells, remotely controlled chokes, ...
* more modeling capacity: computing power, visualization

=> use a model-based systems and control approach
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Closed-loop reservoir management

» Hypothesis: recovery can be significantly increased by
changing reservoir management from a ‘batch-type’ to a
near-continuous model-based controlled activity

» Key elements:

» Optimisation under geological uncertainties
« Data assimilation for frequent updating of system models

e Inspiration:
« Systems and control theory
* Meteorology and oceanography

» A.k.a. real-time reservoir management, guantitative
reservoir management, computer-assisted reservoir
management, smart fields, intelligent fields, ...
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Closed-loop reservoir management
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CLRM perspectives

Geoscience-focused

« Maximize subsurface knowledge

» Relevant for field development planning
= Geological model(s) at the core

Production-focused

 Maximize financial outcome

e Relevant for surveillance and intervention
* Flow model(s) at the core
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Open-loop flooding optimisation
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Optimisation techniques

 Global versus local

» Gradient-based versus gradient-free

= Constrained versus non-constrained

« ‘Classical’ versus ‘non-classical’ (genetic algorithms,

simulated annealing, particle swarms, etc.)
* We use ‘adjoint-based optimal control theory’
» Gradient-based — local optimum
« Computational effort independent of number of controls
* Objective function: ultimate recovery or monetary value
» Controls: injection/production rates, pressures or valve openings
« Beautiful, but code-intrusive and requires lots of programming

Anyway, the magic isn’t in the method
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12-well example

« 3D reservoir

« High-permeability channels

= 8 injectors, rate-controlled

e 4 producers, BHP-controlled
= Production period of 10 years

* 12 wells x 10 x 12 time steps Van Essen et al., 2006
gives 1440 optimization parameters

- Optimisation of monetary value J

J = (value of oil — costs of water produced/injected)
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12-well example

Reactive Control

fleane-rFate

Cptimal Control

time = O.00 year
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Cumunlative Data

1 Production: 0.00 x 10° bbi
Water Production: 0.00 x 10° bbl
Water Injection:  0.00 x 10° bbl

Revenue: 0.0 M§

Cumulative Data

il Production: 0.00 x 10° bbi
Water Production: 0.00 x 10° bbi
Water Injection: 0,00 x 10° bbl

Revenue: 0.0 MS§
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12-well example

Reactive Control
Cumulative Data

(1l Production: 2.65 x 10° bbi
Water Production: 1.31 x 10° bbl
Water Injection:  3.96 x 10° bbi

Revenue: 45.1 M§

fow-Faie

Optimal Control
Cumulative Data

il Production: 2.69 x 10° bhbi
Water Production: 0.63 x 10° bbi
Water Injection: 3,51 x 10° bbl

+8%
Revenue: 485 M§

fow-Faie

time = 7.00 year
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Why this wouldn’t work

» Real wells are sparse and far apart

» Real wells have more complicated constraints

 Field management is usually production-focused

e Long-term optimisation may jeopardize short-term profit
e Optimal inputs cannot be implemented (too dynamic)

* Production engineers don’t trust reservoir models anyway

e \We do not know the reservoir!
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Robust optimisation
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Robust optimization

» Use ensemble of realizations (typically 100)

Van Essen et al., 2006

» Optimize expected value over ensemble

= Single strategy, not 100!
« If necessary include risk aversion (utility function)

e Computationally intensive
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Robust optimisation results

3 control strategies applied to set of 100 realisations:
reactive control, nominal optimisation, robust optimisation

VBN

Probabilty density
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Computer-assisted history matching
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Computer-assisted history matching
(data assimilation)

e Uncertain parameters: permeabilities, porosities, fluid
properties, aquifers, fault positions, horizon depths ...
= Data: production (oil, water, pressure), 4D seismics, ...

» Very ill-posed problem: many parameters, little info

« Variational methods — Bayesian framework:

* Ensemble Kalman filtering — sequential methods

= Reservoir-specific methods (e.g. streamlines)

» ‘Non-classical’ methods — simulated annealing, GAs, ...
 Monte Carlo methods — MCMC with proxies

Also here, the magic isn’t in the method
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Example, Brugge field

= Brugge field
(SPE workshop on CLRM)

- 10 water injectors

« 20 smart producers

e Production data until 10 yrs

= ‘4D seismics’ after 5 and 10 years

e 104 prior models (we used 9)

= Optimisation over remaining 20 years

» Question: effect of adding 4D seismics on production forecast?

« Measures: root-mean squared difference between historic (10 yrs)
and future (20 yrs) production data (oil, water rates)
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Effect of adding 4D seismics (1)
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Effect of adding 4D seismics (2)
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Effect of adding 4D seismics (3)
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[high]

Forecast error

[low]

Effect of adding 4D seismics (4)
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e After assimilating production and 4D seismic data
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Conventional history matching
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Big-loop history matching (2)
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Optimization of ‘smart’ horizontal wells

Answer (joint TU Delft — Shell research):
Combine-large scale reservoir simulation
with adjoint-based optimisation.

g

Yy Yy Y

Question from Shell: How to optimise the valve settings
over time for a ‘smart’ horizontal water injection well?
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= Grouping based on geological features

e Cumulative oil production: 11,47 MMstb
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Alternative 4-group control
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e Cumulative oil production: 12,62 MMstb

 Increase of 10,0% (1,15 MMstb)
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System-theoretical concepts

System model

input (P, state (p,S) output (Dy¢,0y, o)
> >
parameters (K,$,...)

» Controllability of a dynamic system is the ability to
Influence the states through manipulation of the inputs.

= Observability of a dynamic system is the ability to
determine the states through observation of the outputs.

* ldentifiability of a dynamic system is the abllity to
determine the parameters from the input-output behavior.

» Well-defined theory for linear systems. More difficult for
nonlinear ones.
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System theory — main findings so far

= Controllability, observability and identifiability are very
limited

» Reservoir dynamics ‘lives’ in a state space of a much
smaller dimension than the number of model grid blocks

 Linear case (pressures only): typical number of relevant
pressure states: 2 x # of wells

e For fixed wells: the (few) identifiable parameter patterns
correspond just to the (few) controllable state patterns

= Scope for reduced-order modeling to speed up iterative
optimisation, history matching, upscaling?

* First attempts: POD — disappointing speed-ups
 Successful: TPWL (Durlofsky et al.)
» Other approaches: DEIM, sparse representations, ... in progress
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System theory — main findings so far

= Controllablity, observability and identifiability are very
limited

» Reservoir dynamics ‘lives’ in a state space of a much
smaller dimension than the number of model grid blocks

 Linear case (pressures only): typical number of relevant
pressure states: 2 x # of wells

e For fixed wells: the (few) identifiable parameter patterns
correspond just to the (few) controllable state patterns

So, do we still need geology?
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System theory — main findings so far

Yes, we very much need geology!
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System theory — main findings so far

Yes, we very much need geology!

* Interpreting the ‘history matched’ results requires
geological insight

» Understanding optimisation results also requires
geological insight

« Well location-optimisation requires a geological model
e However, we need to focus on the relevant geology:

= Which geological features are identifiable?

= Which geological features influence controllability?
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Conclusions, questions, more work

= Specific optimisation methods less important than
workflow & human interpretation of results

» Use of multiple models to capture uncertainties Iis
essential

» Reservoir dynamics lives in low-order space — so what?
» Control-relevant geology — how do we define it?

e Developments: well location/trajectory optimisation, infill
drilling scheduling, EOR optimisation, big loop, model
maturation, structural uncertainties, multiple data sources
(4-D seismics, gravity, EM, passive seismics, ...)
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Questions?

www.citg.tudelft.nl/smart
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